Subscribe to our free daily newsletters
  Space Travel News  




Subscribe to our free daily newsletters



TECH SPACE
3-D towers of information double data storage areal density

This image shows a comparison of magnetostatic interactions in two-bit-per-dot bit-patterned media consisting of stacks of two perpendicular-to-plane magnetized layers (left) or combined in-plane and out-of-plane magnetized layers (right). Credit: Jerome Moritz
by Staff Writers
College Park, MD (SPX) Apr 25, 2011
Using well-known patterned media, a team of researchers in France has figured out a way to double the areal density of information by essentially cutting the magnetic media into small pieces and building a "3D tower" out of it.

This greatly enhances the amount of data that can be stored in a magnetic storage device and provides a method to reach beyond a wall of physical limits that the currently used technology is hitting. The team presents their findings in the American Institute of Physics' Journal of Applied Physics.

"Over the past 50 years, with the rise of multimedia devices, the worldwide Internet, and the general growth in demand for greater data storage capacity, the areal density of information in magnetic hard disk drives has exponentially increased by 7 orders of magnitude," says Jerome Moritz, a researcher at SPINTEC, in Grenoble. "This areal density is now about 500Gbit/in2, and the technology presently used involves writing the information on a granular magnetic material. This technology is now reaching some physical limits because the grains are becoming so small that their magnetization becomes unstable and the information written on them is gradually lost."

Therefore, new approaches are needed for magnetic data storage densities exceeding 1Tbit/in2.

"Our new approach involves using bit-patterned media, which are made of arrays of physically separated magnetic nanodots, with each nanodot carrying one bit of information. To further extend the storage density, it's possible to increase the number of bits per dots by stacking several magnetic layers to obtain a multilevel magnetic recording device," explains Moritz.

In that context, Moritz and colleagues were able to demonstrate that the best way to achieve a 2-bit-per-dot media involves stacking in-plane and perpendicular-to-plane magnetic media atop each dot. The perpendicularly magnetized layer can be read right above the dot, whereas the in-plane magnetized layer can be read between dots. This enables doubling of the areal density for a given dot size by taking better advantage of the whole patterned media area.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
American Institute of Physics
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TECH SPACE
Slanted Edges Favour Tiny Magnetic Vortices For Data Storage
Dresden, Germany (SPX) Mar 22, 2011
Slanted exterior edges on tiny magnetic disks could lead to a breakthrough in data processing. "By this, structures are created which were impossible in the past;" explains Jeffrey McCord, a materials researcher at the Helmholtz-Zentrum Dresden-Rossendorf. The doctoral candidate Norbert Martin produced the slanted edges in a lab experiment; thus, creating magnetic vortices with a diameter of onl ... read more







TECH SPACE
Ariane rocket launches two telecoms satellites

SpaceX aims to put man on Mars in 10-20 years

ULA Launches Fifth NRO Mission In Seven Months

Ariane 5 Cleared For Launch With Yahsat Y1A And Intelsat New Dawn

TECH SPACE
Dry ice find hints Mars was a wetter place: study

A Tale Of Two Deserts

Mars Rover's 'Gagarin' Moment Applauded Exploration

Mars Flight Possible After 2035

TECH SPACE
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

TECH SPACE
Carbon monoxide detected around Pluto

The PI's Perspective: Pinch Me!

Later, Uranus: New Horizons Passes Another Planetary Milestone

Can WISE Find The Hypothetical Tyche In Distant Oort Cloud

TECH SPACE
The Shocking Environment Of Hot Jupiters

Radio signals could 'tag' distant planets

Titan-Like Exoplanets

A New Way To Find Planets

TECH SPACE
NASA awards $270 million in spaceship contracts

No Fleet Future For X-37B

Model Of Russian Piloted Spacecraft To Go On Show In August

100-Year Starship Study Strategic Planning Workshop Held

TECH SPACE
Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

TECH SPACE
Fast-Rotating Asteroid Winks For Astronomer's Camera

Cold Asteroids May Have A Soft Heart

WISE Mission Spots 'Horseshoe' Asteroid

WISE Mission Spots Horseshoe Asteroid


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement